

Tuned Lens 🔎

 [image: Open In Colab]

 tuned_lens.nn.lenses

tuned_lens.nn.lenses

Provides lenses for decoding hidden states into logits.

Classes

	
class tuned_lens.nn.lenses.Lens(unembed)

	Abstract base class for all Lens.

	
abstract forward(h, idx)

	Decode hidden states into logits.

	Return type:

	Tensor

	
abstract transform_hidden(h, idx)

	Convert a hidden state to the final hidden just before the unembedding.

	Parameters:

	
	h – The hidden state to convert.

	idx – The layer of the transformer these hidden states come from.

	Return type:

	Tensor

	
class tuned_lens.nn.lenses.LogitLens(unembed)

	Unembeds the residual stream into logits.

	
forward(h, idx)

	Decode a hidden state into logits.

	Parameters:

	
	h – The hidden state to decode.

	idx – the layer of the transformer these hidden states come from.

	Return type:

	Tensor

	
classmethod from_model(model)

	Create a LogitLens from a pretrained model.

	Parameters:

	model – A pretrained model from the transformers library you wish to inspect.

	Return type:

	LogitLens

	
transform_hidden(h, idx)

	For the LogitLens, this is the identity function.

	Return type:

	Tensor

	
class tuned_lens.nn.lenses.TunedLens(unembed, config)

	A tuned lens for decoding hidden states into logits.

	
forward(h, idx)

	Transform and then decode the hidden states into logits.

	Return type:

	Tensor

	
classmethod from_model(model, model_revision=None, bias=True)

	Create a lens from a pretrained model.

	Parameters:

	
	model – The model to create the lens from.

	model_revision – The git revision of the model to used.

	bias – Whether to use a bias in the linear translators.

	Return type:

	TunedLens

	Returns:

	A TunedLens instance.

	
classmethod from_model_and_pretrained(model, lens_resource_id=None, **kwargs)

	Load a tuned lens from a folder or hugging face hub.

	Parameters:

	
	model – The model to create the lens from.

	lens_resource_id – The resource id of the lens to load. Defaults to the
model’s name_or_path.

	**kwargs – Additional arguments to pass to
tuned_lens.load_artifacts.load_lens_artifacts() and
th.load [https://pytorch.org/docs/stable/generated/torch.load.html].

	Return type:

	TunedLens

	Returns:

	A TunedLens instance whose unembedding is derived from the given model
and whose layer translators are loaded from the given resource id.

	
classmethod from_unembed_and_pretrained(unembed, lens_resource_id, **kwargs)

	Load a tuned lens from a folder or hugging face hub.

	Parameters:

	
	unembed – The unembed operation to use for the lens.

	lens_resource_id – The resource id of the lens to load.

	**kwargs – Additional arguments to pass to
tuned_lens.load_artifacts.load_lens_artifacts() and
th.load [https://pytorch.org/docs/stable/generated/torch.load.html].

	Return type:

	TunedLens

	Returns:

	A TunedLens instance.

	
generate(model, layer, input_ids, do_sample=True, temp=1.0, max_new_tokens=100)

	Generate from the tuned lens at the given layer.

	Parameters:

	
	model – The base model the generate from. Usually the model this lens trained
on.

	layer – The layer to generate from.

	input_ids – (batch x prompt_len) The input ids to generate from.

	do_sample – Whether to use sampling or greedy decoding.

	temp – The temperature to use for sampling.

	max_new_tokens – The maximum number of tokens to generate.

	Return type:

	Tensor

	Returns:

	The prompt concatenated with the newly generated tokens.

	
save(path, ckpt='params.pt', config='config.json')

	Save the lens to a directory.

	Parameters:

	
	path – The path to the directory to save the lens to.

	ckpt – The name of the checkpoint file to save the parameters to.

	config – The name of the config file to save the config to.

	Return type:

	None

	
transform_hidden(h, idx)

	Transform hidden state from layer idx.

	Return type:

	Tensor

	
class tuned_lens.nn.lenses.TunedLensConfig(base_model_name_or_path, d_model, num_hidden_layers, bias=True, base_model_revision=None, unembed_hash=None, lens_type='linear_tuned_lens')

	A configuration for a TunedLens.

	
classmethod from_dict(config_dict)

	Create a config from a dictionary.

	
to_dict()

	Convert this config to a dictionary.

 tuned_lens.nn.unembed

tuned_lens.nn.unembed

Provides a class for mapping transformer hidden states to logits (and vice versa).

Classes

	
class tuned_lens.nn.unembed.InversionOutput(preimage, grad_norm, kl, loss, nfev)

	Output of Unemebd.invert.

	
class tuned_lens.nn.unembed.Unembed(model)

	Module that maps transformer hidden states to logits (and vice versa).

	
forward(h)

	Convert hidden states into logits.

	Return type:

	Tensor

	
invert(logits, *, h0=None, max_iter=1000, optimizer='lbfgs', prior_weight=0.0, prior=None, step_size=1.0, tol=0.001, weight=None)

	Project logits onto the image of the unemebed operation.

When the hidden state dimension is smaller than the vocabulary size, the
unembed operation cannot perfectly represent arbitrary logits, since its image
is restricted to a subspace; this phenomenon is known as the softmax bottleneck
(cf. https://arxiv.org/abs/1711.03953). Because of this, the inverse can only
be approximate in general. Here, we use gradient-based optimization to find a
hidden state that minimizes the KL divergence from the target distribution p to
unembeded logits q(h): h* = argmin_h KL(p || q(h)).

	Parameters:

	
	logits – Tensor of shape […, vocab_size] containing logits to invert.

	h0 – Initial guess for the hidden state. If None, the least-squares
solution of the linear equation xU = logits is used, where U is the
unembedding matrix.

	max_iter – Maximum number of iterations for the optimizer to take.

	optimizer – Optimization algorithm to use. Currently, only “lbfgs” and “sgd”
are supported.

	prior_weight – The weight of the prior distribution is given in the loss.

	prior – Prior distribution over hidden states used to regularize
the inversion.

	step_size – The step size for the optimizer.

	tol – Tolerance for the inversion objective.

	weight – Optional tensor of shape […, vocab_size] containing weights
for each vocabulary item. If None, all classes are weighted equally.

	Return type:

	InversionOutput

	
unembedding_hash()

	Hash the unmbedding matrix to identify the model.

	Return type:

	str

 tuned_lens.plotting

tuned_lens.plotting

Provides tools for plotting.

Modules

	tuned_lens.plotting.prediction_trajectory

	Plot a lens table for some given text and model.

	tuned_lens.plotting.token_formatter

	Contains a class for formatting tokens for display in plots.

	tuned_lens.plotting.trajectory_plotting

	Contains utility classes for creating heatmap visualizations.

 tuned_lens.plotting.prediction_trajectory

tuned_lens.plotting.prediction_trajectory

Plot a lens table for some given text and model.

Classes

	
class tuned_lens.plotting.prediction_trajectory.PredictionTrajectory(log_probs, input_ids, targets=None, anti_targets=None, tokenizer=None)

	Contains the trajectory predictions for a sequence of tokens.

A prediction trajectory is the set of next token predictions produced by the
conjunction of a lens and a model when evaluated on a specific sequence of tokens.
This class include multiple methods for visualizing different
aspects of the trajectory.

	
anti_targets: Optional[ndarray[Any, dtype[int64]]] = None

	(…, seq_len)

	
property batch_axes: Sequence[int]

	Returns the batch axes for the trajectory.

	
property batch_shape: Sequence[int]

	Returns the batch shape of the trajectory.

	
cross_entropy(**kwargs)

	The cross entropy of the predictions to the targets.

	Parameters:

	**kwargs – are passed to largest_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the cross entropy of the predictions to the
targets.

	
entropy(**kwargs)

	The entropy of the predictions.

	Parameters:

	**kwargs – are passed to largest_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the entropy of the predictions.

	
forward_kl(**kwargs)

	KL divergence of the lens predictions to the model predictions.

	Parameters:

	**kwargs – are passed to largest_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the KL divergence of the lens predictions to the
final output of the model.

	
classmethod from_lens_and_cache(lens, input_ids, cache, model_logits, targets=None, anti_targets=None, residual_component='resid_pre', mask_input=False)

	Construct a prediction trajectory from a set of residual stream vectors.

	Parameters:

	
	lens – A lens to use to produce the predictions.

	cache – the activation cache produced by running the model.

	input_ids – (…, seq_len) Ids that where input into the model.

	model_logits – (…, seq_len x d_vocab) the models final output logits.

	targets – (…, seq_len) the targets the model is should predict. Used
for cross_entropy() and log_prob_diff() visualization.

	anti_targets – (…, seq_len) the incorrect label the model should not
predict. Used for log_prob_diff() visualization.

	residual_component – Name of the stream vector being visualized.

	mask_input – Whether to mask the input ids when computing the log probs.

	Return type:

	PredictionTrajectory

	Returns:

	PredictionTrajectory constructed from the residual stream vectors.

	
classmethod from_lens_and_model(lens, model, input_ids, tokenizer=None, targets=None, anti_targets=None, mask_input=False)

	Construct a prediction trajectory from a set of residual stream vectors.

	Parameters:

	
	lens – A lens to use to produce the predictions. Note this should be
compatible with the model.

	model – A Hugging Face causal language model to use to produce
the predictions.

	tokenizer – The tokenizer to use for decoding the input ids.

	input_ids – (seq_len) Ids that where input into the model.

	targets – (seq_len) the targets the model is should predict. Used
for cross_entropy() and log_prob_diff() visualization.

	anti_targets – (seq_len) the incorrect label the model should not
predict. Used for log_prob_diff() visualization.

	residual_component – Name of the stream vector being visualized.

	mask_input – Whether to mask the input ids when computing the log probs.

	Return type:

	PredictionTrajectory

	Returns:

	PredictionTrajectory constructed from the residual stream vectors.

	
input_ids: ndarray[Any, dtype[int64]]

	(…, seq_len)

	
js_divergence(other, **kwargs)

	Compute the JS divergence between self and other prediction trajectory.

	Parameters:

	
	other – The other prediction trajectory to compare to.

	**kwargs – are passed to largest_delta_in_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the JS divergence between self and other.

	
kl_divergence(other, **kwargs)

	Compute the KL divergence between self and other prediction trajectory.

	Parameters:

	
	other – The other prediction trajectory to compare to.

	**kwargs – are passed to largest_delta_in_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the KL divergence between self and other.

	
log_prob_diff(delta=False)

	The difference in logits between two tokens.

	Return type:

	TrajectoryStatistic

	Returns:

	The difference between the log probabilities of the two tokens.

	
log_probs: ndarray[Any, dtype[float32]]

	(…, n_layers, seq_len, vocab_size) The log probabilities of the predictions
for each hidden layer + the models logits

	
max_probability(**kwargs)

	Max probability of the among the predictions.

	Parameters:

	**kwargs – are passed to largest_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the max probability of the among the predictions.

	
property model_log_probs: ndarray[Any, dtype[float32]]

	Returns the log probs of the model (…, seq_len, vocab_size).

	
property n_batch_axis: int

	Returns the number of batch dimensions.

	
property num_layers: int

	Returns the number of layers in the stream not including the model output.

	
property num_tokens: int

	Returns the number of tokens in this slice of the sequence.

	
property probs: ndarray[Any, dtype[float32]]

	Returns the probabilities of the predictions.

	
rank(show_ranks=False, **kwargs)

	The rank of the targets among the predictions.

That is, if the target is the most likely prediction, its rank is 1;
the second most likely has rank 2, etc.

	Parameters:

	
	show_ranks – Whether to show the the rank of the target or the top token.

	**kwargs – are passed to largest_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the rank of the targets among the predictions.

	
slice_sequence(slice)

	Create a slice of the prediction trajectory along the sequence dimension.

	Return type:

	PredictionTrajectory

	
targets: Optional[ndarray[Any, dtype[int64]]] = None

	(…, seq_len)

	
total_variation(other, **kwargs)

	Total variation distance between self and other prediction trajectory.

	Parameters:

	
	other – The other prediction trajectory to compare to.

	**kwargs – are passed to largest_delta_in_prob_labels.

	Return type:

	TrajectoryStatistic

	Returns:

	A TrajectoryStatistic with the total variational distance between
self and other.

	
property vocab_size: int

	Returns the size of the vocabulary.

 tuned_lens.plotting.token_formatter

tuned_lens.plotting.token_formatter

Contains a class for formatting tokens for display in plots.

Classes

	
class tuned_lens.plotting.token_formatter.TokenFormatter(ellipsis='…', newline_replacement='\\\\n', newline_token='Ċ', whitespace_token='Ġ', whitespace_replacement='_', max_string_len=7)

	Format tokens for display in a plots.

	
format(token)

	Format a token for display in a plot.

	Return type:

	str

	
pad_token_repr_to_max_len(token_repr)

	Pad a token representation to the max string length.

	Return type:

	str

 tuned_lens.plotting.trajectory_plotting

tuned_lens.plotting.trajectory_plotting

Contains utility classes for creating heatmap visualizations.

Functions

empty test needed in case the module has no example usage.
otherwise, testsetup throws an error
pass

	
tuned_lens.plotting.trajectory_plotting.trunc_string_left(string, new_len)

	Truncate a string to the left.

	Return type:

	str

Classes

	
class tuned_lens.plotting.trajectory_plotting.TrajectoryLabels(label_strings, hover_over_entries=None)

	Contains sets of labels for each layer and position in the residual stream.

	
hover_over_entries: Optional[ndarray[Any, dtype[str_]]] = None

	(n_layers x sequence_length x rows x cols) table of strings to display when
hovering over a cell. For example, the top k prediction from the lens.

	
label_strings: ndarray[Any, dtype[str_]]

	(n_layers x sequence_length) label for each layer and position in the stream.

	
stride(stride)

	Return a new TrajectoryLabels with the given stride.

	Parameters:

	stride – The number of layers between each layer we keep.

	Return type:

	TrajectoryLabels

	Returns:

	A new TrajectoryLabels with the given stride.

	
template_and_customdata(col_width_limit=10)

	Construct a template for use with Plotly’s hovertemplate.

	Return type:

	Tuple[str, ndarray[Any, dtype[str_]]]

	
class tuned_lens.plotting.trajectory_plotting.TrajectoryStatistic(name, stats, sequence_labels=None, trajectory_labels=None, units=None, max=None, min=None, includes_output=True, _layer_labels=None)

	This class represents a trajectory statistic that can be visualized.

For example, the entropy of the lens predictions at each layer.

	
clip(min, max)

	Return a new TrajectoryStatistic with the given min and max.

	Parameters:

	
	min – The minimum value to clip to.

	max – The maximum value to clip to.

	Return type:

	TrajectoryStatistic

	Returns:

	A new TrajectoryStatistic with the given min and max.

	
figure(title='', colorscale='rdbu_r', token_width=80)

	Produce a heatmap plot of the statistic.

	Parameters:

	
	title – The title of the plot.

	colorscale – The colorscale to use for the heatmap.

	token_width – The width of each token in the plot.

	Return type:

	Figure

	Returns:

	The plotly heatmap figure.

	
heatmap(colorscale='rdbu_r', log_scale=False, **kwargs)

	Returns a Plotly Heatmap object for this statistic.

	Parameters:

	
	colorscale – The colorscale to use for the heatmap.

	log_scale – Whether to use a log scale for the colorbar.

	**kwargs – Additional keyword arguments to pass to the Heatmap constructor.

	Return type:

	Heatmap

	Returns:

	A plotly Heatmap where the x-axis is the sequence dimension, the y-axis is
the layer dimension, and the color of each cell is the value of
the statistic.

	
includes_output: bool = True

	Whether the statistic includes the final output layer.

	
max: Optional[float] = None

	The maximum value of the statistic.

	
min: Optional[float] = None

	The minimum value of the statistic.

	
name: str

	The name of the statistic. For example, “entropy”.

	
sequence_labels: Optional[ndarray[Any, dtype[str_]]] = None

	(sequence_length) labels for the sequence dimension e.g. input tokens.

	
stats: ndarray[Any, dtype[float32]]

	(n_layers x sequence_length) value of the statistic across layer and position.

	
stride(stride)

	Return a new TrajectoryStatistic with the given stride.

	Parameters:

	stride – The number of layers between each layer we keep.

	Return type:

	TrajectoryStatistic

	Returns:

	A new TrajectoryStatistic with the given stride.

	
trajectory_labels: Optional[TrajectoryLabels] = None

	Labels for each layer and position in the stream. For example, the top 1
prediction from the lens at each layer.

	
units: Optional[str] = None

	The units of the statistic.

 tuned_lens.load_artifacts

tuned_lens.load_artifacts

Load lens artifacts from the hub or locally storage.

Functions

empty test needed in case the module has no example usage.
otherwise, testsetup throws an error
pass

	
tuned_lens.load_artifacts.available_lens_artifacts(repo_id, repo_type, revision='main', config_file='config.json', ckpt_file='params.pt', subfolder='lens')

	Get the available lens artifacts from the hub.

	Return type:

	set[str]

	
tuned_lens.load_artifacts.load_lens_artifacts(resource_id, repo_id=None, repo_type=None, revision='main', config_file='config.json', ckpt_file='params.pt', subfolder='lens', cache_dir=None)

	First checks for lens resource locally then tries to download it from the hub.

	Parameters:

	
	resource_id – The id of the lens resource.

	repo_id – The repository to download the lens from. Defaults to
‘AlignmentResearch/tuned-lens’. However, this default can be overridden by
setting the TUNED_LENS_REPO_ID environment variable.

	repo_type – The type of repository to download the lens from. Defaults to
‘space’. However, this default can be overridden by setting the
TUNED_LENS_REPO_TYPE environment variable.

	config_file – The name of the config file in the folder contain the lens.

	ckpt_file – The name of the checkpoint file in the folder contain the lens.

	revision – The revision of the lens to download.

	subfolder – The subfolder of the repository to download the lens from.

	cache_dir – The directory to cache the lens in.

	Return type:

	tuple[Path, Path]

	Returns:

	
	The path to the config.json file

	The path to the params.pt file

	Raises:

	ValueError – if the lens resource could not be found.

 Loading a pre-trained lens

Loading a pre-trained lens

From the hugging face API

First check if there is a pre-trained lens available in our spaces’ pre-trained lenses folder [https://huggingface.co/spaces/AlignmentResearch/tuned-lens/tree/main/lens].

Once you have found a lens that you want to use, you can simply load it. A tuned lens is always associated with
a model that was used to train it so first load the model and then the lens.

>>> import torch
>>> from tuned_lens import TunedLens
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained('EleutherAI/pythia-160m-deduped-v0')
>>> tuned_lens = TunedLens.from_model_and_pretrained(model)

If you want to load from your own code space you can override the default
by providing the correct environment variables see tuned_lens.load_artifacts.

From the a local folder

If you have trained a lens and want to load it for inference simply pass the
model used to train it and the folder you saved it to.

>>> lens = TunedLens.from_model(model)
>>> # Do some thing
>>> lens.save(directory_path)
>>> lens = TunedLens.from_model_and_pretrained(model, directory_path)

Note the folder structure must look as follows:

path/to/folder
├── config.json
└── params.pt

If you saved the model using tuned_lens.save("path/to/folder") then this should already be the case.

 Training and evaluating lenses

Training and evaluating lenses

In this section, we will discuss some of the technical details of training and evaluating your own lenses. First, we will briefly discuss single GPU training and evaluation. Then we will dive into some of the more technical aspects of training a model.

Downloading the Dataset

Before we can start training, we will need to set up our dataset. The experiments in the paper were run on the pythia models [https://github.com/EleutherAI/pythia] by training thus we train our lenses on the validation set of the pile. Let’s first go ahead and download the validation and test splits of the pile.

wget https://the-eye.eu/public/AI/pile/val.jsonl.zst
unzstd val.jsonl.zst
wget https://the-eye.eu/public/AI/pile/test.jsonl.zst
unzstd test.jsonl.zst

Training a Lens

This command will train a tuned lens on https://github.com/EleutherAI/pythia with the default hyperparameters. The model will be automatically downloaded from the Hugging Face Hub and cached locally. You can adjust the per GPU batch size to maximize your GPU utilization.

python -m tuned_lens train \
 --model.name EleutherAI/pythia-160m-deduped \
 --data.name val.jsonl \
 --per_gpu_batch_size=1 \
 --output my_lenses/EleutherAI/pythia-160m-deduped

Once training is completed, this should save the trained lens to the trained-lenses/pythia-160m-deduped directory.

Evaluating a Lens

Once you have a lens trained, either by training it yourself, or by loading it from the hub, you can run various evaluations on it using the provided evaluation command.

python -m tuned_lens eval \
 --data.name test.jsonl \
 --model.name EleutherAI/pythia-160m-deduped \
 --tokens 16400000 \
 --lens_name my_lenses/EleutherAI/pythia-160m-deduped \
 --output evaluation/EleutherAI/pythia-160m-deduped

Distributed Data Parallel Multi-GPU Training

You can also use torch elastic launch [https://pytorch.org/docs/stable/elastic/run.html] to do multi-GPU training. This will default to doing distributed data parallel [https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html] training for the lens. Note
that this still requires the transformer model itself to fit on a single GPU. However, since we are almost always using some form of gradient accumulation, this usually still speeds up training significantly.

torchrun \
--standalone \
--nnodes=1 \
--nproc-per-node=<num_gpus> \
-m tuned_lens train \
--model.name EleutherAI/pythia-160m-deduped \
--data.name val.jsonl \
--per_gpu_batch_size=1 \
--output my_lenses/EleutherAI/pythia-160m-deduped

Fully Sharded Data Parallel Multi-GPU Training

If the transformer model does not fit on a single GPU, you can also use fully sharded data parallel [https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html] training. Note that the lens is still trained using DDP, only the transformer itself is sharded. To enable this, you can pass the –fsdp flag.

torchrun \
--standalone \
--nnodes=1 \
--nproc-per-node=<num_gpus> \
-m tuned_lens train \
--model.name EleutherAI/pythia-160m-deduped \
--data.name val.jsonl \
--per_gpu_batch_size=1 \
--output my_lenses/EleutherAI/pythia-160m-deduped \
--fsdp

You can also use cpu offloading to train lenses on very large models while using less VRAM it can be enabled with the --cpu_offload flag. However, this substantially slows down training and is still experimental.

Checkpoint Resume

If you are running on a cluster with preemption you may want to be able to run a run with checkpoint resume. This can be enabled by passing the –checkpoint_freq flag with a number of steps between checkpoints.
By default checkpoints are saved to <output>/checkpoints this can be overridden with the --checkpoint_dir flag. There is a known issue with combining this with the zero optimizer, see [this issue](https://github.com/AlignmentResearch/tuned-lens/issues/96).

If checkpoints are present in the checkpoints dir, the trainer will automatically resume from the latest one.

Loading the Model Weights in int8

The –precision int8 flag can be used to load the model’s weights in a quantized int8 format. The bitsandbytes library must be installed for this to work. This should reduce VRAM usage by roughly a factor of two relative to float16 precision. Unfortunately, this option cannot be combined with –fsdp or –cpu_offload.

Weights & Biases Logging

To enable logging to wandb, you can pass the --wandb <name-of-run> flag. This will log the training and evaluation metrics to wandb. You will need to set the WANDB_API_KEY, WANDB_ENTITY and WANDB_PROJECT environment variables in your environment. You can find your API key on your wandb profile page [https://wandb.ai/settings]. To make this easy, you can create a .env file in the root of the project with the following contents.

.env
WANDB_API_KEY= # your-api-key
WANDB_ENTITY= # your-entity
WANDB_PROJECT= # your-project-name

Then you can source it when you start your shell by running source .env. For additional wandb environment variables, see here [https://docs.wandb.ai/guides/track/advanced/environment-variables].

Uploading to the Hub

Once you have trained a lens for a new model if you are feeling generous you can upload it to our hugging face hub space [https://huggingface.co/spaces/AlignmentResearch/tuned-lens] and share it with the world.

To do this first create a pull request on the community tab [https://huggingface.co/spaces/AlignmentResearch/tuned-lens/discussions].

Follow the commands to clone the repo and checkout your pr branch.

Warning

Hugging face hub uses git-lfs to store large files. As a result you should generally work with GIT_LFS_SKIP_SMUDGE=1 set when running git clone and git checkout commands.

Once you have checked out your branch you’re branch copy the config.json and params.pt produced by the training run to lens/<model-name> in the repo. Then add and commit the changes.

Note

You shouldn’t have to use GIT_LFS_SKIP_SMUDGE=1 when adding and committing files.

Finally, in your pr description include the following information:
* The model name
* The dataset used to train the lens
* The training command used to train the lens
* And ideally, a link to the wandb run

We will review your pr and merge you’re lens into the space. Thank you for contributing!

 Comparing prediction trajectories

Comparing prediction trajectories

A prediction trajectory is the set of latent predictions produced by running a lens against each layer of a model. This process creates a sequence of distributions over the next token that in general become more accurate the high in the model they are sourced from. You can think of these distributions as the best guesses that can be made about the final token distribution from by the lenses’ affine translator for that layer.

Since we generally care about more than just one token the sequence of predictions is represented as a 3 dimensional tensor we call the prediction trajectory. This tensor has the shape (num_layers x sequence_length x vocab_size). These distributions are typically stored in log space for numerical precision reasons.

In order to start visualizing and playing with prediction trajectories we will first need to load our model and lens.

[1]:

import torch
from tuned_lens.nn.lenses import TunedLens
from transformers import AutoModelForCausalLM, AutoTokenizer

device = torch.device('cpu')
To try a diffrent modle / lens check if the lens is avalible then modify this code
model = AutoModelForCausalLM.from_pretrained('EleutherAI/pythia-160m-deduped')
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained('EleutherAI/pythia-160m-deduped')
tuned_lens = TunedLens.from_model_and_pretrained(model, map_location=device)
tuned_lens = tuned_lens.to(device)

Now lets prepare some interesting text to examine. Here we will use a quote from Tolkien that has some nice repetition. It’s also common enough that it was probably in the training data so modifying it will hopefully let us see some conflicts between the model’s parametric knowledge and it’s in context learning.

[2]:

input_ids_ring = tokenizer.encode(
 "One Ring to rule them all,\n"
 "One Ring to find them,\n"
 "One Ring to bring them all\n"
 "and in the darkness bind them"
)

input_ids_model = tokenizer.encode(
 "One Model to rule them all,\n"
 "One Model to find them,\n"
 "One Model to bring them all\n"
 "and in the darkness bind them"
)

targets_ring = input_ids_ring[1:] + [tokenizer.eos_token_id]
targets_model = input_ids_model[1:] + [tokenizer.eos_token_id]

Let’s validate that the tokenizations line up and this is indeed going to be a one token substitution.

[3]:

print(tokenizer.convert_ids_to_tokens(input_ids_ring))
print(tokenizer.convert_ids_to_tokens(input_ids_model))

['One', 'ĠRing', 'Ġto', 'Ġrule', 'Ġthem', 'Ġall', ',', 'Ċ', 'One', 'ĠRing', 'Ġto', 'Ġfind', 'Ġthem', ',', 'Ċ', 'One', 'ĠRing', 'Ġto', 'Ġbring', 'Ġthem', 'Ġall', 'Ċ', 'and', 'Ġin', 'Ġthe', 'Ġdarkness', 'Ġbind', 'Ġthem']
['One', 'ĠModel', 'Ġto', 'Ġrule', 'Ġthem', 'Ġall', ',', 'Ċ', 'One', 'ĠModel', 'Ġto', 'Ġfind', 'Ġthem', ',', 'Ċ', 'One', 'ĠModel', 'Ġto', 'Ġbring', 'Ġthem', 'Ġall', 'Ċ', 'and', 'Ġin', 'Ġthe', 'Ġdarkness', 'Ġbind', 'Ġthem']

Now lets generate a prediction trajectory to examine the third line in tolken’s epigrame; That line is consists of tokens [14, 21].

[4]:

from tuned_lens.plotting import PredictionTrajectory

third_line = slice(14, 21)

predictition_traj_ring = PredictionTrajectory.from_lens_and_model(
 tuned_lens,
 model,
 tokenizer=tokenizer,
 input_ids=input_ids_ring,
 targets=targets_ring,
).slice_sequence(third_line)

Now let’s visualize the prediction trajectory for this slice of the tranformers activations. Note that the entire sequence is still being fed to the model we are just visualizing a prediction trajectory for this particular slice ([14:21]) of the activations.

[5]:

import plotly.io as pio
pio.renderers.default = "sphinx_gallery" # Remove this if you are not seeing the plots

[6]:

from plotly.subplots import make_subplots

fig =